摘要:PMEL ORNL/CDIAC-115 Comparison of the Carbon System Parameters at the Global CO2 Survey Crossover Locations in the North and South Pacific Ocean, 1990-1996 As a collaborative program to measure global ocean carbon inventories and provide es
PMEL
ORNL/CDIAC-115
Comparison of the Carbon System Parameters at the Global CO2 Survey Crossover
Locations in the North and South Pacific Ocean, 1990-1996
As a collaborative program to measure global ocean carbon inventories and provide estimates of the anthropogenic carbon dioxide (CO2) uptake by the oceans, the National Oceanic and Atmospheric Administration and the U.S. Department of Energy have sponsored the collection of ocean carbon measurements as part of the World Ocean Circulation Experiment and Ocean-Atmosphere Carbon Exchange Study cruises. The cruises discussed here occurred in the North and South Pacific from 1990 through 1996. The carbon parameters from these 30 crossover locations have been compared to ensure that a consistent global data set emerges from the survey cruises. The results indicate that for dissolved inorganic carbon,fugacity of CO2, and pH, the agreements at most crossover locations are well within the design specifications for the global CO2 survey; whereas, in the case of total alkalinity, the agreement between crossover locations is not as close.
1. INTRODUCTION
Human activity is rapidly changing the trace gas composition of the earth's atmosphere, apparently causing greenhouse warming from excess carbon dioxide (CO2) along with other trace gas species, such as water vapor, chlorofluorocarbons (CFCs), methane, and nitrous oxide. These gases play a critical role in controlling the earth's climate because they increase the infrared opacity of the atmosphere, causing the planetary surface to warm. Of all the anthropogenic CO2 that has ever been produced, only about half remains in the atmosphere; it is the "missing" CO2 for which the global ocean is considered to be the dominant sink for the man-made increase. Future decisions on regulating emissions of "greenhouse gases" should be based on more accurate models that have been adequately tested against a well-designed system of measurements. Predicting global climate change, as a consequence of CO2 emissions, requires coupled atmosphere/ocean/terrestrial biosphere models that realistically simulate the rate of growth of CO2 in the atmosphere, as well as its removal, redistribution, and storage in the oceans and terrestrial biosphere. The construction of a believable present-day carbon budget is essential for the skillful prediction of atmospheric CO2 and temperature from given emission scenarios.
The world's oceans, widely recognized to be the major long-term control on the rate of CO2 increases in the atmosphere, are believed to be absorbing about 2.0 GtC yr-1 (nearly 30 to 40% of the annual release from fossil fuels). Our present
The four parameters of the oceanic carbon dioxide system are dissolved inorganic carbon (DIC), fugacity of CO2 (fCO2), total alkalinity (TAlk), and pH. This report compares the carbon system parameters, along with salinity and dissolved oxygen (O2), against sigma theta () where cruises overlapped throughout the Pacific Ocean basin. Similar comparisons have been made for oceanic carbon in the Indian Ocean (Johnson et al. 1998; Millero et al. 1998). In addition, comparisons of nutrient data have been compiled (Gordon et al. 1998). The cruise data for this report will be made available through the OACES and the Carbon Dioxide Information Analysis Center (CDIAC) data management centers.