gre数学题 排列组合解题技巧

  gre数学考试是gre考试中最难得,所以大家在gre数学复习中就要全方面的复习,把经常考到的gre数学考点都复习一下,把之前做过的gre数学题在重新看一下,下面留学360专家就为大家介绍一下gre数学题中的排列组合的解题技巧。

  下面就是留学360专家为大家整理的gre数学考点中的一种新gre数学题型排列组合的分析,希望大家可以从中一些技巧,祝大家的gre数学考试成功。

  1.排列(permutation):

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数.

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

  也可以这样想从五个数中取出三个放三个固定位置

  那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

  所以总共的排列为5*4*3=60。

  如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

  2.组合(combination):

  从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法:

  C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M

  C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

  那末他们之间关系就有先做组合再作M的全排列就得到了排列

  所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

  性质:C(M,N)=C( (N-M), N )

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

免责声明
1、文章部分内容来源于百度等常用搜索引擎,我方非相关内容的原创作者,也不对相关内容享有任何权利 ;部分文章未能与原作者或来源媒体联系若涉及版权问题,请原作者或来源媒体联系我们及时删除;
2、我方重申:所有转载的文章、图片、音频视频文件等资料知识产权归该权利人所有,但因技术能力有限无法查得知识产权来源而无法直接与版权人联系授权事宜,若转载内容可能存在引用不当或版权争议因素,请相关权利方及时通知我们,以便我方迅速删除相关图文内容,避免给双方造成不必要的损失;
3、因文章中文字和图片之间亦无必然联系,仅供读者参考 。未尽事宜请搜索"立思辰留学"关注微信公众号,留言即可。
[gre数学题 排列组合解题技巧] 文章生成时间为:2015-10-31 01:13:50

立思辰留学专家答疑 - 让专家主动与你联系!

为了节省您的查找时间,请将您要找的信息填写在表格里,留下您的联系方式并提交,我们的顾问会主动与您联系。

意向地区:
您的姓名:
联系电话:
验证码:
联系QQ:
咨询问题:

微信小程序

  • 留学资讯

    留学资讯

  • 大学排名

    大学排名

  • 留学费用

    留学费用

  • GPA查询

    GPA查询

  • 汇率对比

    汇率对比

  • 地图选校

    地图选校

更多

推荐院校